【摘要】为探讨分数阶微分(FOD)联合支持向量机分类-随机森林模型改善高光谱监测荒漠土壤有机质含量(SOM)的效果,对以色列Sde Boker荒漠地区采集的砂质土(SS)和黏壤土(CLS)样品进行理化分析和室内光谱测定,依据光谱的平均反射率建立支持向量机分类模型(SVMAD),并对不同土质高光谱原始反射率分别经0~2阶(间隔0. 2)的分数阶微分处理,构建归一化光谱指数(NDI),分析NDI和SOM之间的二维相关性,并筛选敏感的NDI指数,以此建立不同FOD的随机森林(RF)模型,并以不同土质中的最佳模型进行组合,构建新的SVMDA-RF模型。结果表明:基于光谱平均反射率的SVMDA对土壤质地的分类正确率可达100%;分数阶微分耦合光谱指数具有放大波长间与SOM有关隐含信息的能力,经FOD提升敏感指数的数量在0. 6阶时达到峰值,但黏壤土的敏感指数数量远大于沙质土;由不同FOD敏感指数建立的RF模型中,砂质土在1. 2阶的模型最佳(R_C~2=0. 962,R_P~2=0. 920,RMSEP为0. 435 g/kg,RPD为3. 658),黏壤土在0. 6阶的模型最佳(R_C~2=0. 942,R_P~2=0. 944,RMSEP为0. 554 g/kg,RPD为4. 316);经最佳模型组合后的SVMDA-RF模型,砂质土和黏壤土的模型精度都有所提高,其中R_C~2=0. 980,R_P~2=0. 979,RMSEP为0. 481 g/kg,RPD为7. 004。研究成果可为快速评估荒漠土壤有机质含量提供依据。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《南京体育学院学报(社会科学版)》 2015-07-01
《现代制造技术与装备》 2015-06-26
《重庆高教研究》 2015-06-29
《重庆高教研究》 2015-06-26
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点