中教数据库 > 农业机械学报 > 文章详情

基于FOD和SVMDA-RF的土壤有机质含量高光谱预测

更新时间:2023-05-28

【摘要】为探讨分数阶微分(FOD)联合支持向量机分类-随机森林模型改善高光谱监测荒漠土壤有机质含量(SOM)的效果,对以色列Sde Boker荒漠地区采集的砂质土(SS)和黏壤土(CLS)样品进行理化分析和室内光谱测定,依据光谱的平均反射率建立支持向量机分类模型(SVMAD),并对不同土质高光谱原始反射率分别经0~2阶(间隔0. 2)的分数阶微分处理,构建归一化光谱指数(NDI),分析NDI和SOM之间的二维相关性,并筛选敏感的NDI指数,以此建立不同FOD的随机森林(RF)模型,并以不同土质中的最佳模型进行组合,构建新的SVMDA-RF模型。结果表明:基于光谱平均反射率的SVMDA对土壤质地的分类正确率可达100%;分数阶微分耦合光谱指数具有放大波长间与SOM有关隐含信息的能力,经FOD提升敏感指数的数量在0. 6阶时达到峰值,但黏壤土的敏感指数数量远大于沙质土;由不同FOD敏感指数建立的RF模型中,砂质土在1. 2阶的模型最佳(R_C~2=0. 962,R_P~2=0. 920,RMSEP为0. 435 g/kg,RPD为3. 658),黏壤土在0. 6阶的模型最佳(R_C~2=0. 942,R_P~2=0. 944,RMSEP为0. 554 g/kg,RPD为4. 316);经最佳模型组合后的SVMDA-RF模型,砂质土和黏壤土的模型精度都有所提高,其中R_C~2=0. 980,R_P~2=0. 979,RMSEP为0. 481 g/kg,RPD为7. 004。研究成果可为快速评估荒漠土壤有机质含量提供依据。

【关键词】

631 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号